Definition: A vector space consists of the following:

1. a field \(F \) of scalars;
2. a set \(V \) of objects called vectors;
3. An operation, called vector addition, which associates to each pair of vectors \(\alpha \) and \(\beta \) in \(V \) a vector \(\alpha + \beta \in V \), called the sum of \(\alpha \) and \(\beta \) in such a way that
 (a) vector addition is commutative;
 (b) vector addition is associative;
 (c) there is a vector \(\vec{0} \in V \), called the zero vector, such that \(\alpha + \vec{0} = \alpha \) for all \(\alpha \in V \).
 (d) for each \(\alpha \in V \) there is a vector \(-\alpha \in V \) so that \(-\alpha + \alpha = \vec{0} \).
4. an operation, called scalar multiplication, which associates with each scalar \(c \in F \) and each vector \(\alpha \in V \) a vector \(c\alpha \in V \), called the product of \(c \) and \(\alpha \), in such a way that
 (a) \(1\alpha = \alpha \) for each \(\alpha \in V \);
 (b) \((c_1c_2)\alpha = c_1(c_2\alpha) \);
 (c) \(c(\alpha + \beta) = c\alpha + c\beta \)
 (d) \((c_1 + c_2)\alpha = c_1\alpha + c_2\alpha \).

Example: If \(F \) is a subfield of the field \(G \) then \(G \) is a vector space over \(F \), but \(F \) is not a vector space over \(G \) unless \(F = G \).

Example: If \(S \) is any non-empty set and \(W \) is a vector space over \(F \), then the set of all functions from \(S \) to \(W \) is a vector space over \(F \) with the usual definition of sum of functions and multiplication of functions by scalars. This vector space is sometimes denoted by \(W^S \). In particular, \(F^S \) is a vector space over \(F \).

Definition: A vector space \(V \) over \(F \) is called an inner product space if

1. \(F \) is a subfield of the complex numbers.
2. there is an operation, called the inner product, which associates to each pair of vectors \(\alpha \) and \(\beta \) a scalar \(\langle \alpha | \beta \rangle \in F \) so that
 (a) \(\langle c\alpha + \beta | \gamma \rangle = c\langle \alpha | \gamma \rangle + \langle \beta | \gamma \rangle \);
 (b) \(\langle \beta | \alpha \rangle \) is the complex conjugate of \(\langle \alpha | \beta \rangle \).
 (c) \(\langle \alpha | \alpha \rangle > 0 \) if \(\alpha \neq \vec{0} \).

Example 1: Suppose that \(V = F^{n \times 1} \) where \(F \) is a subfield of the complex numbers and \(w_k > 0 \) for \(k = 1, 2, \ldots, n \). Then
\[
\langle \alpha | \beta \rangle = \sum_{k=1}^{n} w_k \alpha_k \overline{\beta_k}
\]
defines an inner product on \(V \). The scalars \(w_k \) are called weights. If the weights are all 1 this is called the standard inner product. If \(F \) is contained in the real numbers and the weights are all 1 this is called the dot product.

Example 2: Suppose that \(V \) is the set of continuous functions from \([-1, 1]\) into the complex numbers, \(F \) is a subfield of the complex numbers, and \(w \in V \) and \(w(x) > 0 \) for \(x \in (-1, 1) \) then
\[
\langle \alpha | \beta \rangle = \int_{-1}^{1} \alpha(x) \overline{\beta(x)} w(x) \, dx
\]
defines an inner product on \(V \).
Example 3: Suppose that $T : V \to W$ is a one-to-one linear transformation and W is an inner product space with inner product $(\cdot|\cdot)_W$. Then

$$(\alpha|\beta)_V = (T(\alpha)|T(\beta))_W$$

defines an inner product on V.

Proposition: Suppose that V is a vector space over F.

1. $c\vec{0} = \vec{0}$;
2. $0\alpha = \vec{0}$;
3. $c\alpha = \vec{0}$ implies $c = 0$ or $\alpha = \vec{0}$.
4. $-1\alpha = -\alpha$

If V is an inner product space then

1. $(\alpha|c\beta + \gamma) = \overline{c}(\alpha|\beta) + (\alpha|\gamma)$ where \overline{c} denotes the complex conjugate of c.
2. $(\alpha|\alpha) = 0$ if and only if $\alpha = \vec{0}$.

Definition: If V is an inner product space over F then the norm of a vector α, denoted by $\|\alpha\|$ is given by

$$\|\alpha\| = \sqrt{(\alpha|\alpha)}.$$

If $\|\alpha\| = 1$ we say that α is a unit vector. If F contains the real numbers and $\alpha \neq \vec{0}$ then the vector $(1/\|\alpha\|)\alpha$ is called the direction of α. The direction of α is a unit vector.

Polarization identities: Relations between the norm and the inner product.

1. If F is a subfield of the real numbers then

$$4(\alpha|\beta) = (\alpha + \beta|\alpha + \beta) - (\alpha - \beta|\alpha - \beta)$$

so if F is the real numbers then

$$(\alpha|\beta) = \frac{1}{4} \left(\|\alpha + \beta\|^2 - \|\alpha - \beta\|^2\right).$$

2. If F is the complex numbers, then

$$(\alpha|\beta) = \frac{1}{4} \sum_{k=1}^{4} i^k \|\alpha + i^k\beta\|^2.$$

Definition α and β are said to be orthogonal if $(\alpha|\beta) = 0$. A set of vectors is said to be orthogonal if any pair of vectors in the set is orthogonal. A set of orthogonal vectors is said to be orthonormal if each vector in the set is a unit vector.

Lemma: If $\alpha \neq \vec{0}$, define $\text{proj}_\alpha : V \to V$ by

$$\text{proj}_\alpha(\beta) := \frac{\langle \beta|\alpha \rangle}{\langle \alpha|\alpha \rangle}\alpha.$$

$\text{proj}_\alpha(\beta)$ is called the (orthogonal) projection of β onto α, and $\beta - \text{proj}_\alpha(\beta)$ is orthogonal to α.

Pythagorean Theorem: If α and β are orthogonal then

$$\|\alpha\|^2 + \|\beta\|^2 = \|\alpha - \beta\|^2$$

Law of Cosines: If $\alpha \neq \vec{0}$ and $\beta \neq \vec{0}$ then

$$\|\alpha - \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2 - 2\|\alpha\|\|\beta\|\frac{(\langle \alpha|\beta \rangle + \langle \beta|\alpha \rangle)/2}{\|\alpha\|\|\beta\|}.$$
Theorem 8.1: If V is an inner product space then for any vectors α and β and any scalar c:

Norm scaling: $\|c\alpha\| = |c| \cdot \|\alpha\|$.
Positivity: If $\alpha \neq \vec{0}$ then $\|\alpha\| > 0$.

Cauchy-Schwarz-Bunyakowski Inequality: $|\langle \alpha | \beta \rangle| \leq \|\alpha\| \cdot \|\beta\|$.

Triangle inequality: $\|\alpha + \beta\| \leq \|\alpha\| + \|\beta\|$.

The CSB Inequality is proven by applying the Pythagorean Theorem to $\text{proj}_\alpha(\beta)$ and $\text{proj}_\alpha(\beta) - \beta$.

Definition: Let V be a vector space over the field F. A *subspace* of V is a subset W of V which is itself a vector space over F with respect to the operations of V.

Theorem 2.1: A non-empty subset W of a vector space V over F is a subspace of V if and only if W is closed under scalar multiplication and vector addition, that is, for every pair of vectors α and β in W and each scalar $c \in F$ we have $c\alpha + \beta \in W$.

Example: Let V be an inner product space, and let $\alpha \in V$ be given. $W = \{\beta \in V : \langle \beta | \alpha \rangle = 0\}$ is a subspace of V.

Theorem 2.2: The intersection of subspaces of V is a subspace of V.

Example: If W is a subset of an inner product space, the set $W^\perp := \{\beta \in V : \langle \beta | \omega \rangle = 0 \text{ for all } \omega \in W\}$ is a subspace called the *orthogonal complement* of W.

Definition: Let $S \subset V$. The subspace *spanned* by S is the intersection of all subspaces of V that contain S. If S is empty or if $S = \{\vec{0}\}$ then the span of S is $\{\vec{0}\}$.

Definition: If $S \subset V$, a vector β is said to be a *linear combination* of the elements of S if there are scalars c_1, \ldots, c_n and vectors $\sigma_1, \ldots, \sigma_n$ in S so that

$$\beta = \sum_{k=1}^{n} c_k \sigma_k$$

If $\emptyset \neq S \subset V$ we say S is *linearly independent* if the only linear combination of distinct elements of S that equals $\vec{0}$ is the one with all the scalars equal to 0.

Observation: If S is an orthonormal set in V and β is a a linear combination of elements of S then

$$\beta = \sum_{\sigma \in S} (\beta | \sigma) \sigma.$$

Note: Under the hypotheses, $(\beta | \sigma) \neq 0$ for only a finite number of elements of S.

Theorem 8.2: An orthonormal set is a linearly independent set.

Theorem 2.3: The subspace spanned by a non-empty set S of a vector space V is the set of all linear combinations of elements of S.

Definition: If S_1, S_2, \ldots, S_k are subsets of a vector space V, the set of all sums $\sigma_1 + \cdots + \sigma_k$ where $\sigma_j \in S_j$ is called the *sum* of the subsets S_1, S_2, \ldots, S_k and is denoted by $S_1 + S_2 + \cdots + S_k$ or

$$\sum_{j=1}^{k} S_j.$$
Proposition: If W_1, W_2, \ldots, W_n are subspaces of V then $W_1 + W_2 + \cdots + W_n$ is the subspace spanned by $W_1 \cup W_2 \cdots \cup W_n$.

Definitions: If $A \in F^{m \times n}$ then the row vectors of A are the elements of F^m given by
\[\rho_i = (A_{i,1}, \ldots, A_{i,n}) \]
while the column vectors of A are the elements of F^n given by
\[\kappa_j = (A_{1,j}, \ldots, A_{m,j}) \]
The row space of A is the subspace spanned by the row vectors of A, and the column space of A is the subspace spanned by the column vectors of A.