PART 1: CONSTRUCTION OF OUTER MEASURES

1. Show that any outer measure \(\mu_e \) on a set \(X \) is associated with a sequential cover \(Q \) of \(X \) and a function \(\lambda : Q \to [0, \infty] \). (Hint: take \(Q = 2^X \) and \(\lambda = \mu_e \).

Proof. We must show that for any set \(X \), any outer measure \(\mu_e \) on the subsets of \(X \), and any subset \(E \subseteq X \),

\[
\mu_e = \inf \left\{ \sum_{n=1}^{\infty} \mu_e(E_n) | E \subseteq \bigcup_{n=1}^{\infty} E_n \text{ and } E_n \in 2^X \right\}
\]

Since \(2^X \) is a \(\sigma \)-algebra, we can use the monotonicity and countable sub-additivity of \(\mu_e \) to write

\[
\mu_e(E) \leq \mu_e \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \sum_{n=1}^{\infty} \mu_e(E_n),
\]

so the infimum on the right-hand side of (1) is not less than \(\mu_e(E) \). But the singleton \(\{E\} \) is itself a cover of \(E \), and so the infimum must in fact be equal to \(\mu_e(E) \).

2. Suppose that the sequential cover \(Q \) is a semi-algebra and that \(\lambda \) is a measure on \(Q \), and show that the associated outer measure is regular.

Proof. This is essentially the content of Proposition II.10.1 (p. 85) of our text. (Note that any \(Q \in Q \) is measurable, by Proposition 9.1, and hence so are sets in \(Q_\sigma \) and \(Q_{\sigma\delta} \).) It is true that Proposition 10.1 is only stated for sets \(E \subseteq X \) with \(\mu_e(E) < \infty \), but if \(\mu_e(E) = \infty \) there is a countable collection \(\{E_n\}_{n=1}^{\infty} \subseteq Q \) such that \(E \subseteq E' := \bigcup_{n=1}^{\infty} E_n \in Q_\sigma \). By the monotonicity of \(\mu_e \), \(\mu_e(E') = \infty \) and so \(\mu(E') = \mu_e(E') \leq \mu_e(E) + \epsilon \).

3. Let \(\mu_e \) be an outer measure on the subsets of \(X \) and let \((X, \mathcal{A}, \mu)\) be the measure space formed from \(\mu_e \) by the Caratheodory construction. Show that the outer measure \(\mu^+_e \) associated with \((X, \mathcal{A}, \mu)\) satisfies \(\mu^+_e \geq \mu_e \) (meaning that \(\mu^+_e(E) \geq \mu_e(E) \) for every \(E \subseteq X \)), and that \(\mu^+_e = \mu_e \) if and only if \(\mu_e \) is regular. Conclude that an outer measure is regular if and only if it is associated with a pair \((Q, \lambda)\), where \(Q \) is a sequential cover which is also a semi-algebra, and \(\lambda \) is a measure on \(Q \).

Proof. By definition,

\[
\mu^+_e(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu_e(E_n) | E \subseteq \bigcup_{n=1}^{\infty} E_n \text{ and } E_n \in \mathcal{A} \right\}.
\]

By Question 1, on the other hand, \(\mu_e(E) \) can be computed in the same manner—the only difference being that \(\mathcal{A} \) is replaced by \(2^X \). This means that the infimum used to compute \(\mu_e(E) \) is taken over a larger collection of covers, and so is no larger than that used to compute \(\mu^+_e(E) \). Thus, \(\mu^+_e \geq \mu_e \). (Thanks to Kamilla Kasymova for this nice argument.)

Since \(\mu^+_e \) is regular by Question 2, if \(\mu^+_e = \mu_e \) then certainly \(\mu_e \) is regular. Conversely, suppose \(\mu_e \) is regular, and let \(E \subseteq X \). Then for any \(\epsilon > 0 \) there is some \(E' \in \mathcal{A} \) with \(E \subseteq E' \) and \(\mu(E') \leq \mu_e(E) + \epsilon \). Using \(\{E'\} \) as a cover of \(E \), it follows that \(\mu^+_e(E) \leq \mu_e(E) + \epsilon \). Now let \(\epsilon \to 0 \).
4. Let $X = \{1, 2\}$ be a 2-point set. Construct an outer measure on the subsets of X which is not regular.

Proof. If we start by assigning $\mu_e(\emptyset) = 0$, $\mu_e(\{1\}) = 1$, $\mu_e(\{1\}) = 1$ and $\mu_e(X) = c$, we need $c \geq 1$ for μ_e to be monotone and $c \leq 2$ for μ_e to be subadditive. We know that \emptyset and X will automatically be μ_e-measurable; a check shows that $\{1\}$ (and hence also $\{2\}$) fails to be measurable if $c < 2$. In this case, the only measurable set E' which covers $\{1\}$ is $E' = X$, and the inequality $\mu(E') \leq \mu_e(\{1\}) + \epsilon$ cannot be satisfied for any $\epsilon < 2 - c$.

PART 2: CONSTRUCTION OF MEASURES

5. Show that the saturation of a measure space is a saturated measure space; i.e. show that \mathcal{A}_loc is a σ-algebra, that \mathcal{P} is a measure on \mathcal{A}_loc, and that $(X, \mathcal{A}_loc, \mathcal{P})$ is saturated.

Proof. First, we show that \mathcal{A}_loc is a σ-algebra:

- Clearly, $\emptyset \in \mathcal{A}_loc$.
- Let $E_1, E_2, \ldots \in \mathcal{A}_loc$. For any $A \in \mathcal{A}$ with $\mu(A) < \infty$,
 \[(\bigcup_n E_n) \cap A = \bigcup_n (E_n \cap A) \in \mathcal{A},\]
 so $\bigcup_n E_n \in \mathcal{A}_loc$.
- Let $E \in \mathcal{A}_loc$. For any $A \in \mathcal{A}$ with $\mu(A) < \infty$,
 \[E^c \cap A = A \setminus (E \cap A) \in \mathcal{A},\]
 so $E^c \in \mathcal{A}_loc$.

Therefore \mathcal{A}_loc is a σ-algebra.

Next, we show that \mathcal{P} is a measure on \mathcal{A}_loc. It is clear that \mathcal{P} is defined and non-negative in \mathcal{A}_loc, and that $\mathcal{P}(A) < \infty$ for some $A \in \mathcal{A}_loc$ (for example, $\mathcal{P}(\emptyset) = 0$). It remains to show that \mathcal{P} is countably additive on \mathcal{A}_loc; i.e. that $\mathcal{P}(\bigcup_n B_n) = \sum_n \mathcal{P}(B_n)$ for every sequence $\{B_n\}$ of pairwise disjoint sets from \mathcal{A}_loc. This is clear if every B_n is in \mathcal{A}, since $\mathcal{P} = \mu$ for such sets. If even one B_n is in $\mathcal{A}_loc \setminus \mathcal{A}$, then $\mathcal{P}(\bigcup_n B_n) = \infty$, and the countable additivity follows. (Since \mathcal{A}_loc is a σ-algebra, we know $\mathcal{P}(\bigcup_n B_n) \in \mathcal{A}_loc$. Thus, if $\mathcal{P}(\bigcup_n B_n) < \infty$, we would have $\mathcal{P}(\bigcup_n B_n) \in \mathcal{A}$, and so each $A_n = A_n \cap (\bigcup_n B_n) \in \mathcal{A}$.)

Finally, we show that $(X, \mathcal{A}_loc, \mathcal{P})$ is saturated. To this end, suppose that $E \subseteq X$ is \mathcal{P}-locally measurable. This means that for every $B \in \mathcal{A}_loc$ with $\mathcal{P}(B) < \infty$, $E \cap B \in \mathcal{A}_loc$. We wish to show that $E \in \mathcal{A}_loc$, so let $A \in \mathcal{A}$ with $\mu(A) < \infty$; then $A \in \mathcal{A}_loc$ with $\mathcal{P}(A) = \mu(A) < \infty$, and so $E \cap A \in \mathcal{A}_loc$. But then $\mathcal{P}(E \cap A) \leq \mathcal{P}(A) < \infty$ implies $E \cap A \in \mathcal{A}$. It follows that $E \in \mathcal{A}_loc$ as required, and $(X, \mathcal{A}_loc, \mathcal{P})$ is saturated.

6. Show that every σ-finite measure space is saturated.

Proof. Let $X = \bigcup_{n=1}^\infty X_n$, where each X_n is measurable, with $\mu(X_n) < \infty$. If $E \subseteq X$ is locally measurable, then each $E \cap X_n$ is measurable, and so is $E = \bigcup_n (E \cap X_n)$.

7. Give an example of a measure space which is saturated but not complete.

Proof. The example I had in mind was Lebesgue measure restricted to Borel sets (in \(\mathbb{R}^n \), or just \(\mathbb{R} \).) This is not complete, by Proposition II.14.2 (p. 91). However, it is \(\sigma \)-finite, and hence saturated by Question 5.

Some of you came up with simpler examples. For example, let \(X = \{1, 2\} \), let \(\mathcal{A} = \{\emptyset, X\} \) and define \(\mu(\emptyset) = \mu(X) = 0 \). This space is not complete, since \{1\} is a non-measurable subset of a measure zero set. In fact, \{1\} is not even locally measurable, because \(\{1\} \cap X = \{1\} \notin \mathcal{A} \). Similarly, \{2\} is not locally measurable, and so the only locally measurable sets are \(\emptyset \) and \(X \). Since they are both measurable, \((X, \mathcal{A}_{loc}, \mu) \) is saturated. (Thanks to Cindy Nichols for this example.)

8. Let \(X \) be an uncountable set, let \(\mathcal{A} \) consist of all subsets of \(X \) which are either countable or have countable complement, and let \(\mu \) be the function which counts the number of elements of any set \(A \in \mathcal{A} \). Show that \((X, \mathcal{A}, \mu) \) is complete but not saturated. (To avoid tedium, you may assume that \((X, \mathcal{A}, \mu) \) is a measure space.) What is the saturation of \((X, \mathcal{A}, \mu) \)? Show that \((X, \mathcal{A}, \mu) \) cannot be produced from any outer measure by the Caratheodory construction.

Proof. \((X, \mathcal{A}, \mu) \) is complete, because the only subset of measure 0 is the empty set, all of whose subsets are measurable. To see that \((X, \mathcal{A}, \mu) \) fails to be saturated, first note that every set is locally measurable: any set \(A \in \mathcal{A} \) with \(\mu(A) < \infty \) is a finite set, and so \(E \cap A \) is finite, and hence measurable, for any subset \(E \subseteq X \). However any set \(E \) such that neither \(E \) nor \(E^c \) is countable fails to be measurable, and so if we can find even one such set our space is not saturated. The existence of such subsets of \(X \) is intuitively obvious (?), and can be proved for any uncountable \(X \) using the Axiom of Choice. Since our principal aim here is to show that completeness and saturation are independent, we could content ourselves with exhibiting a single example. We could, for example, take \(X \) to be the interval \([0, 2] \subset \mathbb{R} \) (remember that the measure is counting measure) and take \(E = [0, 1] \).

We saw above that every subset of \(x \) is locally measurable. It follows that the saturation of \((X, \mathcal{A}, \mu) \) is \((X, 2^X, \overline{\mu}) \), where \(\overline{\mu}(E) = \infty \) for any \(E \notin \mathcal{A} \); i.e., \(\overline{\mu} \) is ‘true’ counting measure: the function which assigns to every subset \(E \subseteq X \) the number of elements in \(E \).

Finally, suppose that \(\mu_e \) is an outer measure which produces the measure space \((X, \mathcal{A}, \mu) \), and let \(E \subseteq X \). If \(E \) is a finite set it is measurable, and \(\mu_e(E) = \mu(E) \) is the number of elements in \(E \). If \(E \) is an infinite set, it has finite subsets with arbitrarily many elements; i.e., for any \(n \in \mathbb{N} \) there is a subset \(E_n \subseteq E \) with at least \(n \) elements. But then \(\mu_e(E) \geq \mu_e(E_n) \geq n \) for any \(n \), and so we must have \(\mu_e(E) = \infty \). Putting the two cases together, we see that \(\mu_e \) must in fact be ‘true’ counting measure. But every subset of \(X \) is measurable with respect to counting measure, and so counting measure also fails to produce \((X, \mathcal{A}, \mu) \).

9. Show that any measure space \((X, \mathcal{A}, \mu) \) produced by the Caratheodory construction from a regular outer measure \(\mu_e \) must be complete and saturated.

Proof. That \((X, \mathcal{A}, \mu) \) must be complete follows from Proposition II.6.1(iii) (p. 77). It is in fact stated explicitly in Proposition II.6.2 (p. 79).

To see that \((X, \mathcal{A}, \mu) \) must be saturated, let \(E \) be a locally measurable set. Recall from Question 5 that the locally measurable sets from a \(\sigma \)-algebra \(\mathcal{A}_{loc} \), and so \(E^c \in \mathcal{A}_{loc} \). To
show that E is measurable, it suffices to prove that for any subset $B \subseteq X$,

$$\mu_e(B) \geq \mu_e(B \cap E) + \mu_e(B \setminus E).$$

Since this inequality is automatic if $\mu_e(B) = \infty$, we may assume $\mu_e(E) < \infty$. But then, since μ_e is regular, for any $\epsilon > 0$ there is a measurable set $B' \in \mathcal{A}$ such that $B \subseteq B'$ and $\mu(B') \leq \mu_e(B) + \epsilon$. It follows that $B' \cap E$ and $B' \setminus E = B' \cap E^c$ are both measurable, and

$$\mu_e(B \cap E) + \mu_e(B \setminus E) \leq \mu(B' \cap E) + \mu(B' \setminus E) = \mu(B') \leq \mu_e(B) + \epsilon.$$

Now let $\epsilon \to 0$.

10. Given a measure space (X, \mathcal{A}, μ), we may consider \mathcal{A} as a sequential cover of X and construct the outer measure associated with \mathcal{A} and μ. Show that the outer measure associated in this way with (X, \mathcal{A}, μ) is the same as that associated to the completion of (X, \mathcal{A}, μ).

Proof. Let (X, \mathcal{A}', μ') be the completion of (X, \mathcal{A}, μ), and define outer measures μ_e and μ'_e by

$$\mu_e(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(\mathcal{E}) | \mathcal{E} \subseteq \bigcup_{n=1}^{\infty} E_n \text{ and } E_n \in \mathcal{A} \right\}$$

(2)

and

$$\mu'_e(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu'(\mathcal{E}) | \mathcal{E} \subseteq \bigcup_{n=1}^{\infty} E_n \text{ and } E_n \in \mathcal{A}' \right\}$$

(3)

Since both \mathcal{A} and \mathcal{A}' are σ-algebras, the argument used in the proof of Question 1 shows that the infima in (2) and (3) are respectively equal to

$$\mu_e(E) = \inf \left\{ \mu(\mathcal{E}) | \mathcal{E} \subseteq \tilde{E} \text{ and } \tilde{E} \in \mathcal{A} \right\}$$

(4)

and

$$\mu'_e(E) = \inf \left\{ \mu'(\mathcal{E}') | \mathcal{E}' \subseteq \tilde{E}' \text{ and } \tilde{E}' \in \mathcal{A}' \right\}$$

(5)

Now, $\mathcal{A}' \supseteq \mathcal{A}$ and so the infimum in (5) is taken over a larger set than that in (4), and we certainly have $\mu'_e \leq \mu_e$. On the other hand, if $\tilde{E}' \in \mathcal{A}'$ with $E \subseteq \tilde{E}'$, then $\tilde{E}' = \tilde{E} \cup N$ for some $\tilde{E} \in \mathcal{A}$ and some $N \subseteq \tilde{N} \in \mathcal{A}$ with $\mu(\tilde{N}) = 0$; moreover, $\mu'_e(\tilde{E}') = \mu_e(\tilde{E}) = \mu_e(\tilde{E} \cup N)$. Since $E \subseteq \tilde{E} \cup N$, it follows that $\mu_e \leq \mu'_e$.

11. Starting with (X, \mathcal{A}, μ), form the associated outer measure as in the last exercise, and then apply the Caratheodory construction. Show that the resulting measure space is the saturation of the completion of (X, \mathcal{A}, μ).

Proof. Note that by Question 10 the outer measure μ_e, and hence the space $(X, \overline{\mathcal{A}}, \overline{\mu})$, produced from (X, \mathcal{A}, μ) is the same as that produced from the completion of (X, \mathcal{A}, μ). It is therefore sufficient to assume that (X, \mathcal{A}, μ) is complete, and to show that in this case $(X, \overline{\mathcal{A}}, \overline{\mu})$ is the saturation of (X, \mathcal{A}, μ).

Before we embark on the various stages of the proof, let us make a few preliminary observations.

(a) We know from Proposition II.9.1 (p. 83) that $\mathcal{A} \subseteq \overline{\mathcal{A}}$ and that $\overline{\mu}|_{\mathcal{A}} = \mu$.

(b) The outer measure μ_e is constructed from (X, \mathcal{A}, μ) as in (2), which by the argument in the proof of Question 1 yields (4). This implies that for each $E \subseteq X$, and every $n \in \mathbb{N}$, there is a set $\tilde{E}_n \in \mathcal{A}$ such that $E \subseteq \tilde{E}_n$ and $\mu(\tilde{E}_n) \leq \mu_e(E) + \frac{1}{n}$. Putting $F = \bigcap_{n=1}^{\infty} \tilde{E}_n \in \mathcal{A}$, we see that for any $E \subseteq X$ there is a μ-measurable set $F \in \mathcal{A}$ such that $E \subseteq F$ and $\mu(F) = \mu_e(E)$.

(c) Since $\overline{\mu}$ is produced from μ_e by the Caratheodory construction, we know that any set of μ_e-outer measure 0 is $\overline{\mu}$ measurable. In fact more is true: any such set must be μ-measurable. To see this, suppose that $\mu_e(E) = 0$. By the previous remark, there is a set $A \in \mathcal{A}$ with $E \subseteq A$ and $\mu(A) = 0$. Since μ is complete, this implies that $E \in \mathcal{A}$.

Turning to the proof of Question 11, the first step is to show that $\overline{\mathcal{A}} = \mathcal{A}_{loc}$, the σ-algebra of μ-locally measurable sets. We will do this by showing that each of these sets is a subset of the other.

First, let $E \in \mathcal{A}_{loc}$; i.e. E is μ-locally measurable. We will show that E is $\overline{\mu}$-locally measurable—since $\overline{\mu}$ is saturated, this will imply that $E \in \overline{\mathcal{A}}$. Suppose, therefore, that $B \in \overline{\mathcal{A}}$ with $\overline{\mu}(B) < \infty$. By Remark (b) above, there is a set $A \in \mathcal{A}$ with $B \subseteq A$ and $\mu(A) = \overline{\mu}(B) < \infty$. We can write

$$E \cap B = (E \cap A) \setminus (A \setminus B).$$

Note that $E \cap A \in \mathcal{A}$, since E is μ-locally measurable. Also, since A and B are both $\overline{\mu}$-measurable, $\mu_e(A \setminus B) = \overline{\mu}(A \setminus B) = \mu(A) - \overline{\mu}(B) = 0$, and so $A \setminus B \in \mathcal{A}$, by Remark (c). It follows that $E \cap B \in \mathcal{A} \subseteq \overline{\mathcal{A}}$, and E is locally $\overline{\mu}$-measurable. This completes the proof that $\mathcal{A}_{loc} \subseteq \overline{\mathcal{A}}$.

Conversely, suppose that E is $\overline{\mu}$-measurable. We will show that E is μ-locally measurable. Let $A \in \mathcal{A}$ with $\mu(A) < \infty$. Then $\mu_e(E \cap A) \leq \mu(A) < \infty$, and so there is a set $F \in \mathcal{A}$ with $E \cap A \subseteq F$ and $\mu(F) = \mu_e(E \cap A) < \infty$. Since E, A and F are all $\overline{\mu}$-measurable, it follows that $\mu_e(F \setminus (E \cap A)) = \overline{\mu}(F) - \overline{\mu}(E \cap A) = 0$, and so $F \setminus (E \cap A) \in \mathcal{A}$, by Remark (c). But then also $E \cap A = F \setminus (F \setminus (E \cap A)) \in \mathcal{A}$. We have shown that $\overline{\mathcal{A}} \subseteq \mathcal{A}_{loc}$, and hence that $\overline{\mathcal{A}} = \mathcal{A}_{loc}$.

We already know that $\overline{\mu}|_A = \mu$, so it only remains to show that $\overline{\mu}(E) = \infty$ for any $E \in \overline{\mathcal{A}} \setminus \mathcal{A}$. But suppose that $E \in \overline{\mathcal{A}}$ and $\overline{\mu}(E) < \infty$. Then there is a set $F \in \mathcal{A}$ such that $E \subseteq F$ and $\mu(F) = \overline{\mu}(E) < \infty$. Since E and F are both $\overline{\mu}$-measurable, $\mu_e(F \setminus E) = \overline{\mu}(F) - \overline{\mu}(E) = 0$, and so $F \setminus E \in \mathcal{A}$. But then $E = F \setminus (F \setminus E) \in \mathcal{A}$, and the required result follows on taking the contrapositive.

12. Show that a measure space arises from some regular outer measure by the Caratheodory construction if and only if it is complete and saturated.

Proof. We saw in Question 9 that any space arising by the Caratheodory construction from a regular outer measure is complete and saturated. Conversely, suppose that (X, \mathcal{A}, μ) is complete and saturated. By Question 3, the outer measure μ_e constructed from (X, \mathcal{A}, μ) by covering is regular, and by Question 11 the measure space induced by μ_e is the saturation of the completion of (X, \mathcal{A}, μ). But since (X, \mathcal{A}, μ) is complete and saturated, this space is just (X, \mathcal{A}, μ) itself.