Return to:   Atmospheric Science Group   |   College of Letters and Science   |   Department of Mathematical Sciences    
Curriculum Vitae:
Sergey V. Kravtsov | Click Here to download CV

University of Wisconsin-Milwaukee
Department of Mathematical Sciences
Atmospheric Sciences Group
P. O. Box 413, Milwaukee, WI 53201; (414)-229-4863

  • 1998 Ph.D., Physical Oceanography, Florida State University, Florida. Thesis title: “Sea Ice and Climate Sensitivity.” PhD advisor: Dr. W. K. Dewar.
  • 1993 M.S., Applied Mathematics and Physics. Moscow Institute of Physics and Technology, Russia. Thesis title: “Dynamics of a barotropic monopole on a beta-plane.” MS advisor: Dr. G. M. Reznik.
  • 1991 B.S., Physics and Mathematics, Moscow Institute of Physics and Technology, Russia.

Professional Employment
  • 2014 present Professor, University of Wisconsin-Milwaukee
  • 2009 2013 present Associate Professor, University of Wisconsin-Milwaukee.
  • 2005 2009 Assistant Professor, University of Wisconsin-Milwaukee.
  • 2002 2005 Research Scientist, Institute of Geophysics and Planetary Physics, Department of Atmospheric and Oceanic Sciences, UCLA.
  • 1999 2001 Postdoctoral Researcher, Institute of Geophysics and Planetary Physics, Department of Atmospheric and Oceanic Sciences, UCLA.

Current Research Interests

Atmospheric Sciences, Physical Oceanography, Sea-Ice Dynamics, Climate Dynamics, Large-Scale Atmosphere–Ocean–Sea-Ice Interaction, Statistical Methods, Remote Sensing and Applications

Refereed Publications
  1. Kravtsov, S., N. Tilinina, Y. Zyulyaeva, and S. Gulev, 2016: Empirical modeling and stochastic simulation of sea-level pressure variability. J. Appl. Meteor. Climat., in press, available online at doi:
  2. Jajcay, N., J. Hlinka, S. Kravtsov, A. A. Tsonis and M. Palus, 2016: Time scales of the European surface air-temperature variability: The role of 7–8-year cycle. Geophys. Res. Letts., 43, 902–909, doi:10.1002/2015GL067325.
  3. Kravtsov, S., M. Wyatt, J. Curry, and A. A. Tsonis, 2015: Comment on “Atlantic and Pacific Multidecadal Oscillations and Northern Hemisphere temperatures.” Science, 350, 1326, doi:10.1126/science.aab3570.
  4. Kravtsov, S., Rudeva, and S. Gulev, 2015: Reconstructing sea-level pressure variability via a feature tracking approach. J. Atmos. Sci., 72, 487-506, doi: 10.1175/JAS-D-14-0169.1.
  5. Kravtsov, S., N. Sugiyama, and A. A. Tsonis, 2014. Transient behavior in the Lorenz model. Nonlin. Processes Geophys. Discuss., 1, 1905–1917, doi:10.5194/npgd-1-1905-2014.
  6. Kravtsov, S., M. G. Wyatt, J. A. Curry, and A. A. Tsonis, 2014: Two contrasting views of multidecadal climate variability in the twentieth century. Geophys. Res. Lett., 41, 6881–6888, doi:10.1002/2014GL061416.
  7. Hanrahan, J., P. Roebber, and S. Kravtsov, 2014: Attribution of decadal-scale lake-level trends in the Michigan–Huron system. Water, 6 (8), 2278–2299, doi: 10.3390/w6082278.
  8. Kravtsov, S., and S. Gulev, 2013: Kinematics of eddy–mean-flow interaction in an idealized atmospheric model. J. Atmos. Sci., 70, 2574–2595. doi:
  9. Kravtsov, S., 2012: An empirical model of decadal ENSO variability. Climate Dynamics, 39, 2377–2391.
  10. Peters, J., and S. Kravtsov, 2012: Origin of non-Gaussian regimes and predictability in an atmospheric model. J. Atmos. Sci.,69(8), 2587–2599.
  11. Peters, J. M., Kravtsov, S. V., Schwartz, N. (2012). Predictability associated with nonlinear regimes in an atmospheric model. J. Atmos. Sci.,69(3), 1137–1154.
  12. Wyatt, M., S. Kravtsov, and A. A. Tsonis, 2012: Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability. Climate Dyn., 38, 929–949, DOI 10.1007/s00382-011-1071-8.
  13. Kravtsov, S., I. Kamenkovich, D. Kondrashov, and M. Ghil, 2011: Empirical stochastic model of sea-surface temperatures and surface winds over the Southern Ocean. Ocean Sciences, 7, 755–770.
  14. Kravtsov, S., I. Kamenkovich, A. M. Hogg, J. M. Peters, 2011: On the mechanisms of late 20th century sea-surface temperature trends over the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 116, C11034.
  15. Kravtsov, S., and R. Olivas Saunders, 2011; Comment on “Lies, damned lies, and statistics (in Geology).” Eos Trans. of AGU, 92, 65.
  16. Culina, J., S. Kravtsov, and A. Monahan, 2011: Stochastic parameterisation schemes for use in realistic climate models. J. Atmos. Sci., 68, 284–299.  
  17. Kondrashov, D., S. Kravtsov, and M. Ghil, 2010: Signatures of nonlinear dynamics in an idealized atmospheric model. J. Atmos. Sci., 68, 3–12.
  18. Dharshana, K. G. T., S. Kravtsov, and J. D. W. Kahl, 2010: The relationship between synoptic weather disturbances and particulate-matter air pollution over the US. J. Geophys. Res. Atmos., 115, D24219.
  19. Jamison, N., and S. Kravtsov, 2010: Decadal variations of North Atlantic sea-surface temperature in observations and CMIP3 simulations. J. Climate, 23, 4619–4636.
  20. Hanrahan, J. L., S. Kravtsov, M. Ghil, and P. Roebber, 2010: Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett., 37, L01701, doi:10.1029/2009GL041707.
  21. Strounine, K., S. Kravtsov, D. Kondrashov, and M. Ghil, 2010: Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance. Physica D, 239, 145–166, doi:10.1016/j.physd.2009.10.013.
  22. Hogg, A., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082.
  23. Kravtsov, S., M. Ghil, and D. Kondrashov, 2010: Empirical Model Reduction and the Modeling Hierarchy in Climate Dynamics and the Geosciences. Stochastic Physics and Climate Modeling, T. Palmer and P. Williams, Eds., Cambridge University Press, pp. 35­–72.
  24. Hanrahan, J. L., S. Kravtsov, and P. J. Roebber, 2009: Quasi-periodic decadal cycles in levels of lakes Michigan and Huron. Great Lakes Res., 35, 30–35.
  25. Kravtsov, S., Hoeve, J. E. T., S. B. Feldstein, S. Lee, and S.-W. Sun, 2009: The relationship between statistically linear and nonlinear feedbacks and zonal-mean flow variability in an idealized climate model. J. Atmos. Sci., 66, 353–372.
  26. Kravtsov, S., W. K. Dewar, M. Ghil, J. C. McWilliams, and P. Berloff, 2008: A mechanistic model of mid-latitude decadal climate variability. Physica D, 237, 584–599, doi:10.1016/j.physd.2007.09.025.
  27. Kravtsov, S., and C. Spannagle, 2008: Multi-decadal climate variability in observed and simulated surface temperatures. J. Climate, 21, 1104–1121.
  28. Kravtsov, S., W. K. Dewar, P. Berloff, J. C. McWilliams, and M. Ghil, 2008: North Atlantic climate variability in coupled models and data. Nonlin. Proc. Geophys., 15, 13­–24.
  29. Tsonis, A. A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, doi:10.1029/2007GL030288.
  30. Kravtsov, S., W. K. Dewar, P. Berloff, J. C. McWilliams, and M. Ghil, 2007: A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model. Dyn. Atmos. Oceans, 43, 123–150, doi:10.1016/j.dynatmoce.2006.08.001.
  31. Berloff, P., S. Kravtsov, W. K. Dewar, and J. C. McWilliams, 2007: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37, 1103–1121.
  32. Kravtsov, S., P. Berloff, W. K. Dewar, M. Ghil, and J. C. McWilliams, 2006: Dynamical origin of low-frequency variability in a highly nonlinear mid-latitude coupled model. J. Climate, 19, 6391–6408.
  33. Kondrashov, D., S. Kravtsov, and M. Ghil, 2006: Empirical mode reduction in a model of extratropical low-frequency variability. J. Atmos. Sci., 63,1859­–1877.
  34. Kravtsov, S., A. W. Robertson, and M. Ghil, 2006: Multiple regimes and low-frequency oscillations in the Northern Hemisphere's zonal-mean flow. J. Atmos. Sci., 63, 840–860.
  35. Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005: A hierarchy of data-based ENSO models. J. Climate, 18, 4425–4444.
  36. Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multi-level regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Climate, 18, 4404–4424.
  37. Kravtsov, S., A. W. Robertson, and M. Ghil, 2005: Bimodal behavior in the zonal mean flow of a baroclinic β-channel model. J. Atmos. Sci., 62,1746­–1769.
  38. Kravtsov, S., and M. Ghil, 2004: Interdecadal variability in a hybrid coupled ocean–atmosphere–sea-ice model. J. Phys. Oceanogr., 34, 1756–1775.
  39. Kravtsov, S. V., A. W. Robertson, and M. Ghil, 2003: Low-frequency variability in a baroclinic β-channel model with land–sea contrast. J. Atmos. Sci., 60, 2267­–2293, 409TSTS56.
  40. Kravtsov, S. V., and W. K. Dewar, 2003: On the role of thermohaline advection and sea ice in glacial transitions. J. Geophys. Res. Oceans, 108, 3203–3221, 2002JC001439.
  41. Kravtsov, S. V., and A. W. Robertson, 2002: Midlatitude ocean­–atmosphere interaction in an idealized coupled model. Clim. Dyn., 19, 693–711.
  42. Kravtsov, S. V., and A. W. Robertson, 2001: On midlatitude ocean–atmosphere interaction in a simple coupled model. CLIVAR Exchanges, 19, 7–8.
  43. Kravtsov, S. V., 2000: Sea ice and climate. Part II: Model climate sensitivity to perturbations of the hydrological cycle. J. Climate, 13, 463–487.
  44. Kravtsov, S. V., and W. K. Dewar, 1998: Multiple equilibria and transitions in a coupled ocean-atmosphere box model. J. Phys. Oceanogr., 28, 389–397.
  45. Kravtsov, S. V., 1998: Sea Ice and Climate Sensitivity. PhD Thesis, Department of Oceanography, Florida State University.

Articles Pending Publication and under review

(available from

  1. Sugiyama, N., S. Kravtsov, and P. Roebber, 2016: Multiple climate regimes in an idealized lake–ice–atmosphere model. Climate Dyn., submitted.
  2. Kravtsov, S., and D. Callicutt, 2016: On semi-empirical decomposition of multidecadal climate variability into forced and intrinsic components. J. Climate, submitted.

Manuscripts in preparation and unpublished manuscripts

  1. Gulev, S. K., N. Tilinina, S. Kravtsov, O. Zolina, and P. Roebber, 2016: On estimation of cyclone deepening rates from cyclone tracking results. Mon. Wea. Rev., in preparation.
  2. Kravtsov, S., N. Sugiyama, and A. A. Tsonis, 2014. Transient behavior in the Lorenz model. Nonlin. Proc. Geophys.,not accepted.
  3. Kravtsov, S. and A. A. Tsonis, 2008: How much of global warming is due to natural climate variability? Unpublished manuscript (available from


M. Palus, N. Jajcay (Institute of Computer Science, Prague), J. Curry (Georgia Tech), N. Tilinina (IO RAS), Y. Zyulyaeva (IO RAS), I. Rudeva (U. Melbourne), S. Gulev (IO RAS), M. Chekroun (UCLA), S. Vavrus (UW-Madison), M. Notaro (UW-Madison), C. Strong (UU), A. Monahan (UVIC), J. Kahl (UWM), P. Roebber (UWM), K. Swanson (UWM), A. Hogg (ANU), S. Lee (PSU), S. B. Feldstein (PSU), A. Tsonis (UWM), M. Ghil (post-doc advisor, UCLA), W. Dewar (graduate advisor, FSU), A. Robertson (IRI, Columbia Univ.), J. McWilliams (IGPP, UCLA), P. Berloff (Imperial college, London, UK), D. Kondrashov (IGPP, UCLA), I. Kamenkovich (U. Miami, RSMAS).

Graduate Students

A. Sanneman (MS, 2017: “Resolution-dependent atmospheric response to sea-surface temperature anomalies”), D. Callicutt (PhD, 2017: “Multidecadal climate variability in observations and state-of-the-art models), T. Plamondon (MS, 2015: “A mechanistic model of multidecadal climate variability”); N. Sugiyama (PhD, 2015: “The Great Lakes’ regional climate regimes,” co-advised with P. Roebber); J. Peters (MS, 2011: “Predictability associated with atmospheric circulation regimes,” co-advised with P. Roebber); J. Hanrahan (MS, 2008; PhD, 2010: “Great Lakes decadal cycles;” co-advised with P. Roebber); N. Schwartz (MS, 2009: “Zonally symmetric and regionally intensified atmospheric weather regimes”); T. Dharshana (MS 2009: “Weather and air pollution;” co-advised with J. Kahl); C. Spannagle (MS, 2007, “Decadal climate variability in the observed and modeled surface temperatures”); K. Strounine (PhD, 2007; co-advised w/M. Ghil, “Reduced models of atmospheric low-frequency variability”).

Copyright © 2014 Program in Atmospheric Sciences
Site design: Academic Web Pages